Modern OpenGL绘制圆柱体
本文主要介绍如何使用 C++ 生成圆柱几何体以及如何在 OpenGL 中绘制它。
1.绘制方法
由于我们无法绘制一个完美的圆形底面和圆柱体的弯曲侧面,我们只能通过将底面除以扇区(切片)来采样有限数量的点。因此,它在技术上是通过将这些采样点连接在一起来构建棱柱体。随着样本数量的增加,几何形状更接近于圆柱体。
假设一个圆柱体以原点为中心,半径为r,高度为h。圆柱体上的任意点 ( x, y, z ) 可以从具有相应扇形角θ的圆方程计算出来:
扇形角的范围是从 0 到 360 度。每个步骤的扇形角可以通过以下方式计算:
2.创建存放顶点向量和法向量的结构体:
struct TVertex { // position glm::vec3 Position; // normal glm::vec3 Normal; };
3.计算圆周上的点
const int sectorCount = 36; const float pierRadius = 2.0f; const float pierHeight = 5.0f; // 圆周顶点 std::vector<TVertex> getUnitCircleVertices() { const float PI = 3.1415926f; float sectorStep = 2 * PI / sectorCount; float sectorAngle = 0.0f; glm::vec3 position; glm::vec3 normal; TVertex tVertex; std::vector<TVertex> unitCircleVertices; for (int i = 0; i <= sectorCount; ++i) { sectorAngle = i * sectorStep; position.x = pierRadius * cos(sectorAngle); position.y = 0.0f; position.z = pierRadius * sin(sectorAngle); normal.x = cos(sectorAngle); normal.y = 0.0f; normal.z = sin(sectorAngle); tVertex.Position = position; tVertex.Normal = normal; unitCircleVertices.push_back(tVertex); } return unitCircleVertices; }
4.获取圆柱体侧面、顶面、底面的顶点和法向量
// generate vertices for a cylinder void buildCylinderVertices(std::vector<TVertex>& vertices) { std::vector<TVertex> unitVertices = getUnitCircleVertices(); // 获取上、下圆周点数组 std::vector<TVertex> vctTop; std::vector<TVertex> vctBot; TVertex tVertex; for(int i = 0; i < unitVertices.size(); ++i) { tVertex.Position = unitVertices[i].Position; tVertex.Position.y = pierHeight; tVertex.Normal = unitVertices[i].Normal; vctTop.push_back(tVertex); tVertex.Position.y = 0.0f; vctBot.push_back(tVertex); } assert(vctTop.size() >= 2); assert(vctBot.size() >= 2); // 圆柱侧面 for(int i = 0; i < vctTop.size() - 1; ++i) { // 左三角形 vertices.push_back(vctTop[i]); vertices.push_back(vctBot[i]); vertices.push_back(vctBot[i+1]); // 右三角形 vertices.push_back(vctTop[i]); vertices.push_back(vctTop[i+1]); vertices.push_back(vctBot[i+1]); } // 顶部圆形 glm::vec3 position; for (int i = 0; i < vctTop.size() - 1; ++i) { glm::vec3 position(0.0f, pierHeight, 0.0f); glm::vec3 normal(0.0f, 1.0f, 0.0f); tVertex.Position = position; tVertex.Normal = normal; vertices.push_back(tVertex); tVertex.Position = vctTop[i].Position; vertices.push_back(tVertex); tVertex.Position = vctTop[i+1].Position; vertices.push_back(tVertex); } // 底部圆形 for (int i = 0; i < vctBot.size() - 1; ++i) { glm::vec3 position(0.0f, 0.0f, 0.0f); glm::vec3 normal(0.0f, -1.0f, 0.0f); tVertex.Position = position; tVertex.Normal = normal; vertices.push_back(tVertex); tVertex.Position = vctBot[i].Position; vertices.push_back(tVertex); tVertex.Position = vctBot[i+1].Position; vertices.push_back(tVertex); } }
5.将顶点和法向量存入缓冲区
std::vector<TVertex> pierVertices; buildCylinderVertices(pierVertices); unsigned int pierVBO, pierVAO; glGenVertexArrays(1, &pierVAO); glGenBuffers(1, &pierVBO); glBindVertexArray(pierVAO); glBindBuffer(GL_ARRAY_BUFFER, pierVBO); glBufferData(GL_ARRAY_BUFFER, pierVertices.size() * sizeof(TVertex), &pierVertices[0], GL_STATIC_DRAW); // position attribute glEnableVertexAttribArray(0); glVertexAttribPointer(0, 3, GL_FLOAT, GL_FALSE, sizeof(TVertex), (void*)0); // normal attribute glEnableVertexAttribArray(1); glVertexAttribPointer(1, 3, GL_FLOAT, GL_FALSE, sizeof(TVertex), (void*)offsetof(TVertex, Normal)); glBindVertexArray(0);
6.绘制圆柱体
glClearColor(0.9f, 0.9f, 0.9f, 1.0f); glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // be sure to activate shader when setting uniforms/drawing objects lightingShader.use(); lightingShader.setVec3("lightDirection", -direction); // 平行光方向 //lightingShader.setVec3("lightPos", lightPos); lightingShader.setVec3("lightColor", 1.0f, 1.0f, 1.0f); lightingShader.setVec3("viewPos", camera.Position); // 正交平行的视景体 float fRatio = (float)SCR_WIDTH / (float)SCR_HEIGHT; float fHeight = 10.0f; float fWidth = fHeight*fRatio; //glm::mat4 projection = glm::ortho(-fWidth, fWidth, -fHeight, fHeight, -10.f, 100.f); glm::mat4 projection = glm::perspective(glm::radians(camera.Zoom), (float)SCR_WIDTH / (float)SCR_HEIGHT, 0.1f, 100.0f); // 透视投影 lightingShader.setMat4("projection", projection); glm::mat4 viewOrigin = camera.GetViewMatrix(); lightingShader.setMat4("view", viewOrigin); // 绘制圆柱体 viewOrigin = glm::rotate(viewOrigin, glm::radians(30.0f), glm::vec3(1.0f, 0.0f, 0.0f)); viewOrigin = glm::rotate(viewOrigin, glm::radians(15.0f), glm::vec3(0.0f, 0.0f, -1.0f)); lightingShader.setMat4("view", viewOrigin); glm::mat4 modelPier = glm::mat4(1.0f); lightingShader.setMat4("model", modelPier); lightingShader.setVec3("objectColor", glm::vec3(0.5f, 0.1f,0.3f)); glBindVertexArray(pierVAO); glDrawArrays(GL_TRIANGLES, 0, pierVertices.size());
7.删除缓冲区
glDeleteVertexArrays(1, &pierVAO); glDeleteBuffers(1, &pierVBO);
8.效果
9.完整的项目源代码
https://pan.baidu.com/s/1cEUuAmY3JNUbt7sTNvTuyA
提取码:lf5q
2 thoughts on “Modern OpenGL绘制圆柱体”
棒棒哒